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SUMMARY

The �ow inside a spatially modulated channel is examined for viscoelastic �uids of the Oldroyd-B
type. The lower wall is �at and the upper wall is sinusoidally modulated. The modulation amplitude is
assumed to be small. Thus, a regular perturbation expansion of the �ow �eld coupled to a variable-step
�nite-di�erence scheme is used to solve the problem. Convergence and accuracy assessment against
earlier experimental results indicate that there is a signi�cant range of validity of the perturbation
approach. The in�uences of wall geometry, inertia and viscoelasticity on the �ow kinematics and stresses
are investigated systematically. In particular, the interplay between the �ow and �uid parameters e�ects
on the conditions for the onset of back�ow, number of vortices, their size and location is revealed.
The distance between the �ow separation and reattachment locations identi�es the vortex size. Non-
monotonic dependence of the vortex size on elasticity is reported. The critical conditions for the onset
of negative elasticity e�ects on vortex size are identi�ed. The critical Reynolds number for the onset of
back�ow initially decreases then levels o� or even increases as elasticity increases. For highly elastic
�uid and large enough Reynolds number, more than one vortex appear near the lower wall. Copyright
? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The periodic, modulated channel is a simple geometry with applications in many engineering
�uid �ow devices. In some instances, the wall modulation is a natural artefact of a machining
process, while in other applications, the modulation is incorporated into the design to modify
the �ow for the purpose of enhanced mixing or heat transfer as encountered in compact, high
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�ux heat exchangers, and membrane blood oxygenators [1]. The converging–diverging nature
of the periodically modulated channels captures the quintessential features of porous media
�ow, as in the case of tertiary oil recovery, paper and textile coating, composite manufacturing
and biological transport processes [2–11]. In spite of the apparent geometrical simplicity, these
�ows can contain separated �ow regions and exhibit many of the features present in much
more complex geometries [3, 4, 10–18]. These features can signi�cantly impact heat or mass
transfer performance. This richness in physical phenomena in a relatively simple geometry is
behind the ongoing fundamental interest. Moreover, this �ow con�guration provides an ideal
setting for the evaluation of constitutive equations [2–4, 18, 19], and for the developing and
testing of the accuracy and e�ciency of numerical methods in viscoelastic �ow calculations
[8, 20]. This work aims at analysing viscoelastic e�ects on the �ow through periodically
modulated channels numerically.
It is well established experimentally that polymeric �ow through porous media is character-

ized by a substantially higher �ow resistance (pressure drop) in reference to the purely viscous
case [6, 21, 22]. The large increase in the �ow resistance is associated with the extensional
and elastic e�ects of the polymeric �ow. Due to the similarities between periodically modu-
lated geometries and porous media, viscoelastic �ow through modulated channels or tubes is
expected to exhibit larger �ow resistance in comparison to the purely viscous case. Numerical
investigations on viscoelastic �ow inside periodically modulated geometries fail to capture
the considerable increase in the pressure drop [2–6, 8, 20]. Some researchers have suggested
that the failure of theoretical investigations might be attributed to an inherent inadequacy of
the modulated geometries to capture the characteristics of porous medium paths. However,
clear elastic e�ects on the increase in �ow resistance have been con�rmed experimentally for
periodically modulated channels or tubes [7, 9, 11]. Furthermore, Talwar and Khomami [23]
compared the numerical results for steady �ow of polymeric �uids past periodic square arrays
of cylinders with the experimental measurements of Skartsis et al. [22] with a 2% aqueous
polyacrylamide solution. It was shown that the computed and the experimental results are
similar below a critical Reynolds number, Re, or Weissenberg number, We. Above this crit-
ical value, the experimental results exhibit a dramatic increase in the �ow resistance. Thus,
the discrepancy between experimental and numerical results may be related either to the inad-
equacy of the constitutive model or more likely to the non-linear transition to a di�erent �ow
structure, which substantially increases the �ow resistance. If this transition is due to Hopf or
degenerate Hopf bifurcation, the steady numerical computations follow the steady branch of
the solution become physically unattainable.
Various constitutive models have been employed to overcome the discrepancy between

the numerical and experimental �ndings [2–5]. Although di�erent viscoelastic models show
di�erent �ow resistance values when other geometric and �ow parameters are unchanged, all
of the reported numerical results severely underestimated the �ow resistance. Furthermore,
there are experimental data [24] obtained with a sinusoidally modulated tube and M1 Boger
�uid, which show quantitative agreement with numerically calculated �ow resistance values
using the Oldroyd-B model and steady-state assumptions. Since these experimental data were
obtained at Re less than unity and small elasticity values (Deborah number, De¡3), the
experimental results might represent steady viscoelastic �ow. Thus, the deviation between
numerical and experimental results is more likely to be attributed to the possibility that the
experimental increase in the �ow resistance arises from a temporal instability, where the steady
two-dimensional �ow exhibits a non-linear transition to another three dimensional or time
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periodic or non-axially periodic �ow structure that considerably increase the �ow resistance.
Temporal instability as the most logical reason behind the abrupt increase in the �ow resistance
is strongly supported by another two experimental studies [25, 26]. Both of those studies
suggest that purely elastic �ow loses its stability above a critical We and the transition is
due to Hopf bifurcation. Therefore, stability analysis of a typical viscoelastic �uid �ow inside
modulated geometries is important to understand the deviation between experimental and
numerical results.
Given the complexity of the geometries and the non-linearities involved (of elastic and iner-

tial nature), linear or non-linear stability analysis is too sti� for a numerical stability investiga-
tion to be preformed. It was stated by Pilitsis and Beris [3] that the mixed pseudospectral=�nite
di�erence technique is not suitable for time-dependent calculations. Although Sureshkumar
[27] attempted to investigate the linear stability of sinusoidally periodic channel �ow using
an upper convected Maxwell (UCM) model in the inertial and purely elastic region, his tech-
nique seems to underestimate the critical Reynolds number for the onset of instability even in
the Newtonian limit (see Fig. 20 in Reference [14]). Due to the numerical di�culties asso-
ciated with establishing reliable numerical stability analysis for viscoelastic �uid �ows inside
modulated geometries, it is advisable to investigate the temporal stability analysis experimen-
tally. However, one has to establish, numerically, �rst the in�uence of �uid and geometric
parameters on the steady �ow structure of viscoelastic �uids inside modulated geometries. The
numerically calculated results will then be compared against the experimentally observed ones
to locate the critical conditions where the steady branch of the numerical solutions becomes
physically unattainable. The current work is only limited to investigate steady viscoelastic
�ow inside modulated channels numerically.
One has to be careful in selecting the appropriate constitutive model to e�ciently describe

the experimentally employed viscoelastic �uid. Davidson et al. [17, 19] illustrated that the
deviation between the numerically calculated and the experimentally measured �ow kinematics
for the �ow of 20% polystyrene solution in a periodically constricted channel may be due
to the inadequacy of using the UCM or White-Metzner model to describe such �uid. Doyle
et al. [28] have shown that a dilute monodisperse polystyrene solution exhibits a stress-
conformation hysteresis. That is, the stress and the end-to-end conformation evolve along one
path during the transient unraveling process and a distinct second path during the relaxation
back to equilibrium. Such hysteretic e�ects cannot be captured with simple dumbbell models
like the UCM or the White-Metzner model, but at least qualitatively by simple closed-form
constitutive models such as the ones proposed by Hinch [29] and Rallison [30].
Hardly any work has been preformed to examine the in�uence of polymeric �ow parameters

on the velocity and stress �elds in complex geometries in the inertial regime. The motivation
behind most of the reported studies was to investigate elastic e�ects on the �ow resistance. The
�ow inside periodic, modulated channel or tube exhibits an abundance of interesting physics
depending upon the modulation amplitude and frequency, and the �ow rate of the passing
�uid. For Newtonian �uid, numerical results and experimental �ow visualizations showed that
recirculation regions, often referred to as vortices, would form beneath the modulation crest
beyond a certain critical Reynolds number that decreases exponentially as the modulation
amplitude or the wavenumber increases [1, 12–15, 31–38]. The size of the recirculation �ow
region as identi�ed by the distance between the separation and reattachment points varies with
Reynolds number as Re increases beyond the critical Reynolds number. The interested reader
is referred to Zhou et al. [13, 14] for a comprehensive review of the pertinent literature.
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In�uence of viscoelasticity on the conditions for the onset of separation, number of vortices,
their size and location has never been systematically examined. While few examples [3, 20]
have been reported where an increase in elasticity causes a reduction in the vortex size, other
studies [39, 40] demonstrate that an increase in elasticity results in a simultaneous vortex
growth. Elasticity contradictory e�ects may be related to the inconsistency in the examined
�ow parameters and geometric modulation amplitudes and frequencies among various studies.
A relation among �ow and geometric parameters to estimate a critical elasticity value beyond
which elasticity has a negative e�ect on vortex formation should exist. Since there is no
systematic study on the interplay between viscoelastic �uid and geometric parameters e�ects
on vortex formation, the critical elasticity value has not been determined yet. One of the main
objectives of the current study is to estimate this critical value numerically.
Numerical analysis of viscoelastic �ow through periodically modulated channels or tubes

is signi�cantly complicated, primarily because of the non-linearities and the hyperbolic-like
character of the governing equations. King et al. [41] have used a restructured form of the
momentum equations (explicitly elliptic form of the momentum equations, EEME) for the
steady creeping �ow calculation of UCM model in smooth and singular geometries in order to
overcome the di�culties with obtaining convergent numerical solutions for steady viscoelastic
�ows using straightforward application of �nite element or �nite di�erence methods. The
restructured problem was solved by the Galerkin �nite element method. Since this method
is restricted to creeping UCM model, it is not advisable to be employed here to investigate
the interplay between inertia and viscoelastic e�ects. Although Phan-Thien and Khan [7]
managed to obtain a numerically stable solution for the �ow of Oldroyd-type �uid through
a sinusoidal tube using the boundary element method, their results are unreliable because
of the employment of too coarse mesh. Upon using a �ner mesh, the boundary element
method results resembled a better agreement with other numerical methods [8]. Other than
the larger CPU cost associated with the employment of �ner mesh, the validity of the boundary
element method is questionable because of the development of a steep stress gradients near the
walls [2, 3].
A more powerful approach that combines the high accuracy of the spectral method and

the computational e�ciency of �nite element=�nite di�erence techniques is the mixed pseudo-
spectral=�nite di�erence approach [2]. Although this method managed to provide accurate
results without increasing the computational domain [8, 20, 42], it experiences some di�-
culties in handling �ow with recirculation, especially when inertia is present. Recircula-
tion regions were predicted only for large amplitude modulation and creeping �ow [3]. In
addition, a special modi�cation to the method has to be implemented to examine Oldroyd-B
model rather than the UCM. Since the current study examines the intricate interaction between
inertia and viscoelastic e�ects on the conditions for onset of back�ow in the limit of small
modulation, the pseudospectral=�nite di�erence method may be unsuitable.
Another numerically stable approach is the perturbation approach. The accuracy of this

approach depends on the amplitude of the modulation. This approach is of interest because of
its simplicity and the fact that in many applications, the interest lies in small modulation where
the perturbation method provides reasonable accuracy. In fact, the perturbation approach has
been used by Beris et al. [2, 3, 5] to estimate the accuracy of the pseudospectral=�nite di�er-
ence technique. Ahrens et al. [43] used the undulating tube geometry and a �rst-order domain
perturbation analysis to investigate the change of type occurring in the vorticity equation from
elliptic to hyperbolic at high Reynolds number for an Oldroyd-type �uid. In order to overcome
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the di�culties associated with imposing boundary conditions over irregular boundaries, Zhou
et al. [13] suggested combining the perturbation approach with the mapping approach, where
the physical modulated domain is transformed into a simple rectangular domain. By taking
advantage of the mapping approach, one also adopts the essence of the perturbation method
to reduce the complicated transformed governing equations into a set of ordinary di�erential
equations subject to simple boundary conditions.
For Newtonian �uid �ow inside modulated channels, Zhou et al. [13, 14] compared the

�rst-order perturbation results to simulations obtained using �nite volume approach [44]. The
validity of the �nite-volume code itself was established by comparison with the experimental
results of Nishamura et al. [33, 34]. It was found that the velocity and pressure �elds were
predicted accurately (to within 1%) for small modulation amplitudes and large wavelengths.
The di�erences in the predicted �ow are kept well around the order of the square of the
dimensionless amplitude. Abu-Ramadan and Khayat [45] established that the presence of non-
Newtonian parameters does not seem to a�ect the accuracy of the perturbation approach.
For purely elastic steady �ow, Sureshkumar [27] showed that the maximum �ow resistance
di�erence upon using second-order domain perturbation analysis and the more accurate �nite
element approach is less than 3% for dimensionless wall amplitude, wavenumber and De
equal to 0.15, 1, and 4.5, respectively. It is important to address the issue of the convergence
rate and storage requirement for any conventional numerical method and the perturbation
method. Executing the problem using �nite element or �nite volume method requires large
storage and slow convergence rate. In fact, the domain perturbation analysis is an order of
magnitude faster than the �nite element or the �nite volume method [14, 27]. Since the domain
perturbation approach is intended to provide a fast and accurate alternative to conventional
numerical methods in the limit of small modulation, second-order perturbation analysis will
be implemented here.
The present study aims to correct three apparent de�ciencies gleaned from the above lit-

erature review. First, although the precision of the perturbation method was established for
Newtonian �ow [13, 14], the range of validity of the perturbation approach for viscoelastic
�ow is still relatively unexplored. Second, there has not been any systematic study on the
interplay between inertia and viscoelastic e�ects on the �ow characteristic. The reported nu-
merical studies have primarily focused on �uid elasticity e�ects on the �ow resistance. The
hydrodynamic features of the steady viscoelastic �ow in weakly modulated channels will be
described in a systematic and coherent way. The present study emphasizes, particularly, the in-
�uence of inertia and viscoelasticity, as well as geometric parameters on the conditions for the
onset of back�ow, vortex size and location. Third, earlier investigations indicate the existence
of a critical elasticity value above which elasticity has a negative e�ect on vortex forma-
tion. This critical value and its relation with other parameters have never been established.
Estimating this value numerically is an important part of the current study.
In this study, while the channel lower wall is straight, the upper wall is spatially modulated.

This geometry is used in a variety of engineering �ow devices, and can capture the features
of porous media �ow. In order to eliminate shear-thinning e�ects, Oldroyd-B model will
be used. This model describes the rheological behaviour of Boger �uids [46, 47], which are
highly elastic viscoelastic �uids with constant viscosity. In the following section, the problem
formulation and solution procedure are described. The third section introduces the numerical
assessment. Numerical results are presented in the fourth section. Some conclusions are drawn
in the �fth section.
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2. PROBLEM FORMULATION AND SOLUTION PROCEDURE

In this section, the general equations and boundary conditions for the pressure-driven �ow with
spatially modulated walls are derived for small-amplitude modulation. A regular perturbation
expansion for the �ow �eld is carried out after the equations are mapped over a rectangular
domain, reducing the problem to a set of ordinary di�erential equations, which will be solved
using a variable-step-�nite-di�erence scheme.

2.1. Governing equations

Consider the �ow of an incompressible viscoelastic �uid of density �, relaxation time �, and
viscosity �. In this study, only �uids that can be reasonably represented by a single relax-
ation time and constant viscosity are considered. The �uid is assumed to be pressure driven
between two in�nite rigid boundaries, where the upper wall only is arbitrarily but periodi-
cally modulated. The analysis is con�ned to a two-dimensional steady state �ow. Typically,
the examined �uid is a polymer solution composed of a Newtonian solvent and a polymer
solute of viscosities �s and �p, respectively. Thus, the viscosity of the solution is given by
�=�s + �p.
The problem is �rst introduced in the (X; Y ) plane, with the X -axis coinciding with the

lower wall. The general shapes of the lower and upper boundaries are thus given by Y =0
and Y =D + Af(X ), respectively, where A is the modulation amplitude, and D is the mean
gap width. Here f(X ) is a general function of X that may be arbitrarily prescribe. In this
work, however, only a sinusoidal modulation will be considered. The periodicity length of
the sinusoidal wave is L. Other modulation, such as the arc shape or the triangle modulation
can be represented by a general Fourier series as illustrated by Zhou et al. [14]. The general
shape of the channel is illustrated in Figure 1.

Figure 1. Physical domain for spatially modulated channel (dimensionless notation is used).
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The general conservation of mass and linear momentum equations are given by

∇ ·U=0; �(U∇ ·U)= − ∇P + �s∇2U+∇ · T (1)

where ∇ is the gradient operator, U(U;V ) is the velocity vector, P is the pressure, and T is
the elastic part of the deviatoric stress tensor. In this work, the �uid is assumed to obey the
Oldroyd-B constitutive model [46] so that T is governed by

�[U:∇T− (∇U)t :T− T:∇U]= − T+ �p[∇U+ (∇U)t] (2)

where � is the �uid relaxation time, and a superscript, t, donates matrix transposition. The
�uid is assumed to adhere to the rigid boundaries, and the no-slip and no-penetration boundary
conditions are written as

U(X; Y =0)=U(X; Y =D+ Af(X ))=0 (3)

It is convenient to cast the problem in terms of dimensionless terms, which are introduced
as follows:

(x; y)=
1
D
(X; Y ); (u; v)=

1
Umax

(U;V )

(Q;R; S)=
D

�Umax
(TXX ; TYY ; TXY ); p=

D
�Umax

P
(4)

where Umax is the maximum velocity corresponding to an equivalent linear pressure gradient
imposed on the Poiseuille �ow between two �at plates coinciding with the mean height of
the modulated walls. The subscript, here, donates the direction. After the dimensionless vari-
ables are introduced, six important dimensionless groups emerge in the problem, namely, the
Reynolds number Re, Deborah number De, solvent-to-solute viscosity ratio Rv, dimensionless
wavelength, �, wavenumber, �, and the aspect ratio �:

Re=
�UmaxD
�

; De=
�Umax
D

; Rv=
�s
�p

�=
L
D
; �=

2�
�
; �=

A
D

(5)

The dimensionless conservation equations are:

ux + vy =0 (6a)

Re(uux + vuy) =−px + aRv(uxx + uyy) +Qx + Sy (6b)

Re(uvx + vvy) =−py + aRv(vxx + vyy) + Sx + Ry (6c)

whereas the constitutive equation (2) becomes:

De[uQx + vQy − 2(uxQ + uyS)] =−Q + 2aux (7a)

De[uSx + vSy − vxQ − uyR] =−S + a(uy + vx) (7b)

De[uRx + vRy − 2(vxS + vyR)] =−R+ 2avy (7c)
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where subscripts denote partial di�erentiation. Here a = 1=(Rv + 1) is the solute-to-solution
viscosity ratio.
The above equations are solved subject to the no-slip and no-penetration boundary

conditions

u(x; y=0)= v(x; y=0)= u(x; y=1+ �f(x))= v(x; y=1+ �f(x))=0 (8a)

and spatial periodicity

�(x=0; y)=�(x= �; y); p(x=0; y)=p(x= �; y)− ��p (8b)

where � represents u; v; Q; R, or S, � is the dimensionless wavenumber of the wall modula-
tion, and �p is the linear pressure drop per unit length. Problems (6)–(8) is de�ned over
the physical domain �xy= {(x; y)|x∈ [0; �]; y∈ [0; 1 + �f(x)]}, as depicted, schematically, in
Figure 1. This domain is next mapped onto the rectangular domain.

2.2. Domain transformation

The periodic physical domain �xy is mapped onto the rectangular domain ��	= {(�; 	)|�∈ [0;
�]; 	 ∈ [0; 1]}. In this case,

�(x; y)= x; 	(x; y)=
y
h(x)

(9)

where h(x)=1 + �f(x) is the dimensionless gap. Now the transformed equations read

u� − u		h
′

h
+
v	
h
=0 (10a)

Re
[
u

(
u� − 	h′

h
u	

)
+
vu	
h

]
=−

(
p� − 	h′

h
p	

)

+aRv

[
u��−2 	h

′

h
u�	+	

(
h′

h

)2
(	u		+2u	)−	h

′′

h
u	+

u		
h2

]

+Q� − 	h′

h
Q	 +

S	
h

(10b)

Re
[
u

(
v� − 	h′

h
v	

)
+
vv	
h

]
=−p	

h

+aRv

[
v��−2 	h

′

h
v�	+	

(
h′

h

)2
(	v		 + 2v	)− 	h′′

h
v	 +

v		
h2

]

+S� − 	h′

h
S	 +

R	
h

(10c)
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De
[
u

(
Q� − 	h′

h
Q	

)
+
vQ	
h

− 2Q
(
u� − 	h′

h
u	

)
− 2Su	

h

]

= −Q + 2a
(
u� − 	h′

h
u	

)
(10d)

De
[
u

(
S� − 	h′

h
S	

)
+
vS	
h

−Q
(
v� − 	h′

h
v	

)
− Ru	

h

]

= − S + a
(
v� − 	h′

h
v	 +

u	
h

)
(10e)

De
[
u

(
R� − 	h′

h
R	

)
+
vR	
h

− 2S
(
v� − 	h′

h
v	

)
− 2Rv	

h

]

= − R+ 2a v	
h

(10f)

where a prime denotes total di�erentiation. The boundary conditions become

u(�; 	=0)= u(�; 	=1)= v(�; 	=0)= v(�; 	=1)=0 (11a)

�(�=0; 	) =�(�= �; 	); p(�=0; 	)=p(�= �; 	)− ��p (11b)

where � represents u; v; Q; R, or S.
The solution of the non-linear problem (10) is sought subject to condition (11). Despite

the di�culty of the problem emerging from the additional viscoelastic terms and the non-
linearity, the solution can be sought for some limit �ows that are of practical and fundamental
signi�cance.

2.3. The perturbation solution

In this work, only small amplitude modulation is examined, so that � is small (�� 1). In this
case, a regular perturbation expansion is used for the velocity, pressure, and the extra stresses.
The regular perturbation expansion for any variable, �, may be written as

�=�(0) + ��(1) + �2�(2) +O(�3) (12)

where terms of O(�3) and higher are neglected, and the superscripts �(0), �(1), and �(2) rep-
resent the leading, �rst, and second-order perturbation parameters. Substitution of expression
(12) into Equations (10) and conditions (11) leads to a hierarchy of equations and boundary
condition that must be solved to each order in �. Thus, to leading order in �, one recovers
the equations encountered in conventional Poiseuille �ow. Correspondingly the solution is
given by

u0=4	(1− 	); v0 = 0; p0�= − 8

Q0=2aDeu0
2

	 ; R0 = 0; S0 = au0	
(13)
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where the subscripts donate partial di�erentiation, and superscript brackets have been dropped
for simplicity. The equations and the boundary conditions to O(�) and O(�2) are detailed in
Appendix A in Reference [48].
At this point, it is necessary to introduce explicitly the modulated wall pro�le, f. Various

con�gurations may be easily incorporated in the general formulation above. For instance, both
walls could be assumed to be modulated, and the modulation can be represented by a general
Fourier series, as long as the wall pro�le is smooth. In this work, however, only the upper
wall is assumed to be modulated in the form of a sine wave such that

f(�)= − cos(��) (14)

where � is recalled to be the dimensionless wavenumber. Because of the periodicity of the
�ow, the general solution to any of the perturbated variables �, may be expressed in terms
of Fourier series, such as

�(�; 	) =�0(�; 	) + �
∞∑
n=1
�11n (	) sin(n��) + �

12
n (	) cos(n��)

+�2
∞∑
n=1
�21n (	) sin(n��) + �

22
n (	) cos(n��) +O(�

3) (15)

where terms of O(�3) and higher are neglected. Substitution of expressions (15) into
Equations (11) and conditions (12), lead to a system of non-homogeneous di�erential equa-
tions for the perturbated coe�cients, constituting a boundary-value problem of the two-point
type. These equations and boundary conditions are given in Appendix B in Reference [48].
The solution is obtained through a variable-step �nite-di�erence scheme (IMSL-DBVPFD)
with a tolerance equal to 10−6. The basic discretization is the trapezoidal rule over a non-
uniform mesh. This mesh is chosen adaptively, to make the local error approximately the
same size everywhere. Higher-order discretizations are obtained by di�ered corrections and
global error estimates are produced to control the computation. The linear system of equations
is solved using a special form of Gauss elimination that preserves sparseness.

3. NUMERICAL ASSESSMENT

The perturbation approach is intended to provide a fast and accurate alternative to conventional
numerical methods in the limit of small modulation amplitude. Since the dependence of the
solution in the axial direction is expressed analytically for the domain perturbation analysis,
unlike �nite element or �nite volume methods the convergence rate and storage requirements
for the perturbation analysis are not an issue. In fact, the domain perturbation analysis is
an order of magnitude faster than the �nite element or the �nite volume method [14, 27].
It is thus important to establish its accuracy and range of validity for viscoelastic �ow. For
Newtonian �uid, Zhou et al. [13, 14] showed that �rst-order perturbation approach predicts
the velocity and pressure �elds accurately (within 1%) for �60:2 and �6 5. Whether elastic
e�ects reduce the geometric validity range for the perturbation approach is still an unanswered
question.
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Error sources for the perturbation method are in the truncated terms. These terms contain
combinations of the velocity gradients multiplied by coe�cients containing the parameters
�, �, Re, De, and Rv. The in�uence of the truncated terms on the continuity equation is
conveniently summarized through the global error in mass conservation, since only the mean
pressure gradient is imposed in the solution procedure. Letting Qave be the average over one
modulation period of the �ow rate Q at each x location, the maximum relative error may then
be de�ned as

�=
|Q −Qave|max

Qave
(16)

The in�uence of the modulation amplitude on the maximum error is shown in Figure 2,
where � is plotted against � for �=1, Re=0, De=4, Rv=1. As expected, for the �rst-order
perturbation analysis the error is on the order of �2, and conservation of mass is generally
satis�ed to within 1% for �¡0:15. The error is reduced to become on the order of �3 for the
second-order perturbation solution, and conservation of mass is generally satis�ed to within
1% for �¡0:28. Additional calculations were carried out for several values of �, Re, De,
and Rv. The in�uence of the wavenumber, inertia, and viscoelastic e�ects on the overall error
appears to be negligible when �¡0:28 when second-order perturbation terms are included. This
was con�rmed through calculations for 0:1¡�¡2� and 0¡Re¡6000 and for Rv∈ [0;∞) and
De∈ [0; 12]. The only in�uencing parameter appears to be the modulation amplitude, �.

Figure 2. Maximum relative error for mass conservation as functions of the modulation amplitude, �.
Note that the curves are essentially independent of the remaining parameters.
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Comparison with experimental results provides an extra source for accuracy assessment.
However, reliable experimental results for steady-state Oldroyd-B �uid �ow through channels
of arbitrary shapes are unattainable. Yalamanchili et al. [10, 11] experimental results cannot
be used for comparison because of two reasons. First, Although the examined dilute poly-
meric solution (polyacrylamide) can be described using the Oldroyd-B constitutive equation
[47, 49, 50], incomplete information about the �uid properties prevent an accurate comparison
with any numerical results. Yalamanchili et al. did not report the type of the polyacrylamide
used in their experiment. Further examination of Yalamanchili’s �ndings discloses some con-
�icting results. For example, while Figure 7 in Reference [10] shows the centreline velocity
for a mixture of 60% water and 40% glycerin to �uctuate around 10± 0:5 cm=s at Re = 70:5,
the centreline velocity is reduced to 3 ± 0:2 cm=s for the same �uid at the same Reynolds
number in the same channel in Figure 10 in Reference [10].
Although direct comparison with reliable experimental results for a viscoelastic �ow is un-

achievable, perturbation approach seems to be reasonably accurate in predicating the �ow
kinematics and stress �elds for both Newtonian and non-Newtonian �uids. In particular,
Abu-Ramadan and Khayat [45] compared the shear induced �ow �elds inside periodically
modulated channels assessed by the perturbation approach to that evaluated using a �nite-
volume code, FLUENT, for shear-thinning �uids. They show that the �rst-order perturbation
solution is accurate to within �2. Thus, they establish that non-Newtonian’s parameters do
not a�ect the validity range of the perturbation approach. Furthermore, Sureshkumar [27]
showed that for purely elastic steady �ow, the maximum �ow resistance di�erence between
the second-order domain perturbation analysis and the more accurate �nite element approach
is less than 3% for dimensionless wall amplitude, wavenumber and De equal to 0:15; 1, and
4.5, respectively.
The validity of the applied second-order perturbation approach can be quantitatively as-

sessed in the Newtonian limit, where numerous experimental and numerical studies have been
preformed. Although Zhou et al. [13, 14] have established the accuracy of the perturbation
approach through comparison with the �nite volume approach; direct comparison with exper-
imental results was not reported. The most reliable experimental investigation for Newtonian
�ow has been carried out by Hudson et al. [51]. They used Laser Doppler velocimetry to
measure spatial and time variation of the two-dimensional �ow �eld through a channel with
sinusoidal bottom wall and a �at top wall. G�unther and von Rohr [15] con�rmed the vortex
size and location using particle image velocimetry (PIV). Figure 3 compares Hudson et al.
experimental results (left) with the second-order domain perturbation method results (right)
for Re=10050, �=0:05, and �=2�. This �gure shows the mean velocity �eld (arrows) and
the streamlines. Although the reported Reynolds number is larger than the critical Reynolds
number for onset of instability in non-modulated (Poiseuille) channel �ow, the reported �ow
presents the time-average �ow �eld. Qualitatively, both techniques, experimental and numer-
ical, predict similar �ow �elds. A separated region or a vortex appears in the diverging
section of the channel near the modulated wall. A region of large velocity gradients close
to the modulated wall appears downstream of the vortex. Quantitative di�erences between
experimental and numerical results exist. Experimental results show that the vortex extends
between x=�=0:3 and x=�=0:5. Second-order perturbation method seems to overestimate the
vortex size, which extends between x=�=0:18 and 0.7. Neglecting second-order perturbation
terms leads to even much larger vortex size. A valid explanation for the quantitative devia-
tion can be related to the di�culties reported in obtaining experimental results for small wall
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Figure 3. Comparison between Hudson et al. [51] experimental results (left) and the current study
perturbation method results (right) for Newtonian �uid. Here Re=10050, �=0:05, and �=2�.

modulation (�¡0:2) [1, 31–34]. From the experimental vortex structure in Figure 3, those
di�culties are not surprising. In the small amplitude range, the separation point occurs far
downstream of the cusp at the wall trough and is susceptible to upstream perturbations.
Since the domain perturbation approach is CPU e�cient, and it can produce faithfully

accurate results for weakly modulated channels [2, 4, 13, 14, 27], it will be implemented here
to investigate the �ow characteristics and vortex formation for pressure driven Oldroyd-B
�uid type �ow through weakly modulated channels. It has been shown that second-order
perturbation approach [27] generates more accurate results than the �rst-order perturbation
approach with hardly any extra CPU and storage capacity. Furthermore, the �rst non-zero
correction to the �ow resistance as compared to the Poiseuille �ow occurs at the second
order [2]. Hence, it is important to account for those terms throughout this study. All the
presented results throughout this section are obtained through the second-order perturbation
analysis.

4. DISCUSSION AND RESULTS

In this section, viscoelastic �ow inside a weakly modulated channel will be considered. To es-
tablish separate e�ect of elasticity on the �ow kinematics and stress distributions, purely elastic
�ow will be examined �rst. The in�uence of inertia will be assessed afterwards. The interplay
between elastic and inertia e�ects will also be addressed. Since geometric parameters can al-
ter the critical conditions for the onset of back�ow for Newtonian �uid [1, 12–14, 32, 35, 37],
their in�uence on the vortex size, measured by the distance between the separation and reat-
tachment points, and vortex location, especially near the lower wall, will be examined for
viscoelastic �uids.
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4.1. Purely elastic �ow

Consider purely elastic �ow (Re=0) with Rv=1, �=0:1 and �=1. The general �ow re-
sponse is typically illustrated in Figure 4 for a �ow inside a modulated channel with De=4.
The �gure shows the streamlines, the contours of pressure departure (from linear pressure),
pe, velocity components in the streamwise, u, and depthwise, v, directions, the shear stress,

xy, and the normal stress di�erence, N = 
xx − 
yy. The �gure shows a comparison between
the streamlines obtained for creeping Newtonian �ow (dashed lines) and purely elastic �ow
(solid lines). Although the streamlines for both creeping Newtonian and purely elastic �ows
follow generally the channel wall pro�le, elasticity tends to cause a slight distortion in the
symmetry of the �ow �eld with respect to the channel crest. The loss of symmetry ampli-
�es upon increasing De or decreasing Rv. The distortion in the �ow �eld is attributed to
presence of the upper-convective terms in the constitutive equations, and the ensuing normal
stress e�ect. Investigating the in�uence of elasticity on the pressure and stress �elds is, thus,
essential.
Figure 4 indicates that while the pressure departure varies little across the channel, a break

in symmetry with respect to the crest location is clearly depicted. Pressure variation across
the channel is more obvious downstream of the crest and trough locations, where the pressure
is maximum and minimum, respectively. The in�uence of elasticity on the �ow kinematics
is inferred from the velocity contours in the streamwise and depthwise directions, which
con�rm the break in symmetry. Inspection of the u and v contours show that the depthwise
�ow is much weaker than the streamwise �ow, on the order of 5%. It is also inferred that
the changes in v with respect to both x and y are smaller than the change in u with respect
to y. Moreover, u is not expected, given the weak modulation amplitude, to change rapidly
with x.
The deviation of the viscoelastic �ow from the Newtonian �ow is best re�ected by the

stress distribution across the channel. The contours of 
xy and N for creeping Newtonian �ow
are examined �rst as reported by Davidson et al. (see Figure 1 in Reference [19]). It is
found that creeping Newtonian �ow through periodically modulated geometries is character-
ized by a symmetric shear stress, 
xy, distribution about the crest [2, 14, 19]. The maximum
shear stress amplitude occurs at the trough of the modulated wall along which 
xy is negative.
There is a change in sign from negative at the upper section of the channel to positive at
the lower section of the channel along the centre plane. Comparison between the viscoelas-
tic stress distribution in Figure 4 and the Newtonian stress distribution indicates that while
elasticity dramatically alters the 
xy distribution near the upper modulated wall, it has hardly
any e�ect along the centre plane where 
xy is negligibly small. Little e�ect is observed near
the lower wall. In addition, steep boundary layers are predicted in the region next to the
modulated wall.
Creeping Newtonian �ow through periodically modulated channel is characterized by an

anti-symmetric N distribution about the crest [2, 14, 19]. Near the modulated wall, N is positive
in the converging section of the channel, and changes its sign at the crest. Figure 4 shows
that for a purely elastic �ow N is positive everywhere across the channel and sharp stress
gradients occur near the walls. These gradients develop near the walls as elasticity is intro-
duced, con�rming the earlier results of Pilitsis and Beris [2]. As expected, elasticity results
in a vast increase in N . In particular, it is found that the maximum N increases from 1.46 to
85 as De increases from 0 to 4 for the set of geometric parameters used in Figure 4.
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Figure 4. Typical response of purely elastic �ow (Re=0). The �gure displays the streamlines, the
pressure departure, pe, the contours of the streamwise and depthwise velocity components, u and v,
shear stress distribution, 
xy, and normal stress di�erence, N . Here �=0:1, �=1, Rv=1, De=4. The
solid streamlines present viscoelastic �ow and the dashed lines are for Newtonian �ow (De=0).
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The quantitative deviation from the Newtonian limit is investigated upon examining the pres-
sure pro�les along the walls for various De as shown in Figure 5. The creeping Newtonian
�ow is characterized by a sinusoidal anti-symmetric pressure distribution along the walls.
Viscoelastic pressure pro�les display a gradual deviation from sinusoidal behaviour as elas-
ticity increases, with elasticity causing a downstream shift of the location of the extrema. As
elasticity increases, the extrema are shifted further downstream, as indicated by the loci of
the extrema in Figure 5. The shift in the extrema location contributes to the distortion in the
�ow �eld as indicated by Figure 4 (see above). Furthermore, elasticity in�uences the pressure
in a non-monotonic manner. Figure 5 shows that for low values of elasticity, De¡4, the
amplitude of the pressure departure for a viscoelastic �uid is lower than that for a Newtonian
�uid. Once De exceeds a critical value, Decrt (in this case ≈ 5), |pe| increases with elasticity.
Similar behaviour has also been observed experimentally by Rothestein and McKinely [18]
for viscoelastic �ow through a 4:1:4 axisymmetric contraction=expansion duct. They showed
that Decrt is close to the Deborah number at which coil-stretch transition occurs in a homoge-
nous extensional �ow. For De¿0, one can infer from both Figures 4 and 5 that pressure
experiences a steeper change near the extrema at the upper wall than at the lower wall. The
extrema occur at the same x locations at the two walls, but |pe| is slightly stronger at the
upper wall. Pilitsis and Beris [2] suggested that pressure rather than viscoelastic stresses dom-
inate forces developed normal to the streamlines as elasticity increases. In other words, Pilitsis
and Beris [2] suggested that stresses have little e�ect on the forces normal to the streamlines.
This suggestion is con�rmed by the comparison of the pressure and normal forces pro�les
along the walls, regardless of the De level, at both the lower and upper walls.
The e�ect of elasticity for creeping �ow is further assessed by examining the normal

stress distribution in Figure 6, which shows the N pro�les at the upper and lower walls for
06De610. Elasticity causes a break in the sinusoidal Newtonian normal stress distribution
along the upper wall. As De increases from 0 to 2, the maximum and the minimum N relocate
from x=�=0:25 and 0.75, respectively, to 0.95 and 0.5. Further increase in De results in an
upstream shift of the extrema locations. The �gure indicates that normal stress amplitude in-
creases almost linearly with De, similarly to straight Poiseuille �ow. Furthermore, viscoelastic
N pro�les near the upper wall is almost identical to its pro�les near the lower wall. This
identical behaviour is absent for Newtonian �uid. While N is sinusoidally distributed near the
upper modulated wall, it is zero near the lower wall for Newtonian �uid. The domination of
the extra stresses developed in viscoelastic �uids over the normal stresses developed due to
extensional character of the modulation can explain the vast di�erence between viscoelastic
and Newtonian normal stress distribution and amplitude.
The e�ect of elasticity is quanti�ed further upon inspection of 
xy pro�les near the walls.

Figure 7 shows that at the modulated wall, elasticity changes the shear stress distribution. For
Newtonian �ow, 
xy is always negative, and the �uid is subject to higher shear stress in the
narrow cross section. For viscoelastic �ow, 
xy shows a maximum in the diverging section
of the channel and a minimum in the converging section of the channel. In agreement with
earlier results [2, 6, 7, 19], the shear stress is more concentrated in the converging section of
the channel. In particular, the amplitude of 
xy in the converging section of the channel is
almost double its amplitude in the diverging section. This is due to the elastic stress buildup
in the converging region. Furthermore, the shear stress amplitude increases almost linearly
as a function of elasticity. This is in agreement with earlier results by numerous investiga-
tors [2, 6, 7]. This behaviour is due to the additional stresses resulting from the constitutive
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equation (2), which is characterized by a solid-like behaviour at high values of elasticity [6].
Investigating the in�uence of elasticity on 
xy distribution along the lower wall reveals dis-
tinctly di�erent qualitative behaviour in comparison with 
xy pro�le at the upper wall. First,
while the location of 
xy extrema is hardly altered by elasticity at the upper wall, the extrema
are shifted upstream at the lower wall as elasticity increases. Second, 
xy amplitude decreases
as elasticity increases at the lower wall. In particular, as De increases from 0 to 2, 
xy am-
plitude doubles at the upper wall and decreases by around 4% at the lower wall. The relative
insigni�cant in�uence of elasticity on shear stress along the lower wall can be understood
from the de�nition of 
xy, which is expressed as


xy= aRv(uy + vx) + S (17)

At the lower wall, S= auy as indicated by Equation (7), with vx=0. Thus, 
xy is reduced to
uy at the lower wall. Since it has been illustrated earlier that elasticity has relatively small
e�ect on the �ow kinematics at the lower wall (see above), 
xy pro�les near the lower wall
will be slightly a�ected by elasticity. The slight break in symmetry in the viscoelastic velocity
contours (see Figure 4) is re�ected in 
xy pro�les near the lower wall.
The correlation between elastic e�ect on the �ow kinematics and shear stress is inferred

from Figures 7 and 8. Figure 8 shows the vorticity �, �= vx−uy, distribution along the upper
and lower walls for various De. Note that, at the lower wall, 
xy= − �. Although elasticity
causes a symmetry breaking in the � distribution, with respect to the crest along the walls, it
results in a smoother variation of � along the walls. An increase in De results in an upstream
shift and reduction in the values of the extrema. Thus, elasticity tends to minimize the e�ect
of the modulation, making the creeping �ow behave similarly to that between two �at plates.
Comparison between creeping Newtonian and purely elastic �ows shows that elasticity alters

stress and pressure distributions with minimal e�ect on the �ow kinematics. Although this
observation con�rms earlier numerical results obtained by Pilitsis and Beris [2] and Davidson
et al. [19], it contradicts the experimental �ndings of Davidson et al. [19], who reported
that non-Newtonian e�ects are �rst observed in the �ow kinematics and not in the stresses.
This contradiction is apparently attributed to the inadequacy of the constitutive model used
in their �nite-element calculations. Both the UCM and White-Metzner model were used. The
insigni�cant change in �ow kinematics resulting from elasticity is clearly due to the little
change in pressure gradient as De increases as shown in Figure 5. The results above show
that elastic e�ects are more noticeable near the modulated wall. However, this conclusion is
limited to purely elastic �uids.

4.2. In�uence of inertia for viscoelastic �ow

It is well established, for Newtonian �ow, that as the Reynolds number exceeds a certain
threshold, �ow separation occurs in the region of expansion (below the crest). In this case,
the threshold depends on the modulation amplitude and wavelength. A similar response is
expected for a viscoelastic �uid, but �uid elasticity is expected to in�uence the conditions
for the onset of separation. The general �ow response for a viscoelastic �uid that exhibits
back�ow is typically illustrated in Figure 9. Here �=0:1, �=1, De=4, Rv=1, and Re=2500.
The overall e�ect of inertia is observed by comparing the current �ow to that in Figure 4 for
Re=0, the remaining parameters being the same. These two �ows are typical of the pre- and
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Figure 5. Elastic e�ects on the pressure departure pro�les, pe, along the upper and lower walls for
purely elastic �uid. Here Rv=1, �=0:1, and � = 1.
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Figure 6. Elastic e�ects on the normal stress di�erence distribution, N , along the upper and lower walls
for purely elastic �uid. Here Rv=1, �=0:1, and �=1.
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Figure 7. Elastic e�ects on the shear stress distribution, 
xy, along the upper and lower walls for purely
elastic �uid. Here Rv=1, �=0:1, and �=1.
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Figure 8. Elastic e�ects on vorticity distribution, �, along the upper and lower walls for purely
elastic �uid. Here Rv=1, �=0:1, and �=1.
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the post-critical ranges of Reynolds number. As will be discussed later, the critical Reynolds
number at which the �ow separates is strongly in�uenced by �uid and geometry parameters.
A signi�cant di�erence in streamline topology between Figures 9 and 4 is the appearance

of a back�ow region below the crest. The �ow reattaches immediately downstream of the
crest resulting in a signi�cant loss of symmetry. Comparing pe contours from Figures 9
and 4 shows that inertia causes an upstream shift in the location of pressure extrema. The
pressure exhibits a minimum below the trough and a maximum downstream of the crest.
The depthwise pressure variation across the channel is more pronounced when inertia is
present. More importantly, the pressure magnitude increases signi�cantly as inertia increases.
The magnitude of pe increases 40 times as Re increases from 0 to 2500. Thus, a positive
correlation between pressure gradient and inertia occurs. A large pressure gradient would
force separation to occur, which is consistent with the present result. The appearance of the
back�ow causes the core region of the �ow to expand less into the cavity, resulting in a
smaller depthwise velocity, v. The separation streamline reduces the e�ective cross-sectional
�ow area. Consequently, as a result of continuity the streamwise velocity in the channel core
remains high and the streamlines outside the recirculation are no longer parallel to the wall
and thus the maximum v is reduced when compared to the creeping case. The depthwise
velocity contours exhibit a break in symmetry. The v contours are skewed downstream under
the in�uence of inertia. Despite the apparent signi�cance of the back�ow, the magnitude of
the velocity in the reverse direction is only 2% of the maximum in u (in the core region).
Inertia e�ect on the stress distribution for a viscoelastic �uid is inferred from the contours

of shear stress, 
xy, and normal stress di�erence, N . Comparison with Figure 4 shows that
inertia results in increasing the magnitude of 
xy and N near the upper and lower walls. In
particular, inertia causes the maximum N to increase by 300% and the maximum 
xy by 89%.
This increase in magnitude is accompanied by sharper stress gradients near the upper wall for
both N and 
xy, and near the lower wall for N only. Stress distribution along the boundaries
is dramatically altered by inertia. This point will be revisited later (see Figures 11 and 12).
A correlation between shear stress pro�les near the walls and the appearance of back�ow
does not appear to exist for viscoelastic �uids. It is worth mention that in addition to Zhou
et al. [13, 14], Tsangaris and Leiter [32] demonstrated that for a Newtonian �uid, the switch
in the 
xy sign indicates the onset of back�ow.
The in�uence of inertia is further investigated upon examining the pressure pro�les at both

the upper and lower walls for the range Re∈ [0; 3000] as shown in Figure 10. Inertia causes
an upstream shift in the extrema locations (see the change from Re=0 to Re=500). Further
increase in inertia results in an increase in the pressure magnitude with insigni�cant in�uence
on the extrema locations. Pressure magnitude along the upper wall is higher, leading to a larger
pressure gradient at the upper wall. Thus, back�ow is more likely to occur �rst near the upper
wall. More importantly, increasing inertia results in a monotonic increase in the pressure. The
increase in the pressure magnitude is due to inertial non-linear e�ects regardless of whether a
back�ow appears or not [4, 12, 14, 37]. Both viscoelastic and Newtonian �uids exhibit similar
pressure pro�les in the inertial regime. In particular, elasticity has negligible e�ects on the
pressure in the inertial regime. This behaviour is not surprising since Figure 5 shows that for
creeping �ow near the upper wall, as De increases from 0 to 4, the pressure is only slightly
a�ected. Similar behaviour is expected to exist in the inertial regime. This is in agreement
with earlier experimental investigation by James et al. [24], where elasticity was found to
have little e�ect on the �ow resistance in the inertial regime.
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Figure 9. Typical response of viscoelastic �ow with high inertia (Re=2500). The
�gure displays the streamlines, the pressure departure, pe, the contours of the stream-
wise and depthwise velocity components, u and v, shear stress distribution, 
xy, and

normal stress di�erence, N . Here �=0:1, �=1, Rv=1, and De=4.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:117–157



140 E. ABU-RAMADAN AND R. E. KHAYAT

Figure 10. Inertia e�ects on the pressure departure, pe, along the upper and lower walls for viscoelastic
�uid (De=4, and Rv=1). Here �=0:1 and �=1.
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Figure 11. Inertia e�ects on the Normal stress di�erence distribution, N , along the upper and lower
walls for viscoelastic �uid (De=4, Rv=1), left, and Newtonian �uid, right. Here �=0:1 and �=1.

Since most of the changes in the stress occur near the walls, investigating N and 
xy
distribution along the walls for various Reynolds numbers is important. Figure 11 shows N
pro�les at the upper and lower walls for a viscoelastic �uid (De=4; Rv=1), and Newtonian
�uid for the range Re∈ [0; 3000]. At the upper wall, increasing inertia results in a simultaneous
increase in the magnitude of N for both �uids. Viscoelastic �uids are characterized by larger
N in comparison with Newtonian �uid regardless of Re. Notice the appearance of several
relative maxima for both �uids near the upper wall. The normal stress di�erence pro�les
in Figure 11 are closely related with the depthwise velocity contours in Figure 9. Close
inspection of the velocity contours shows that inertia e�ects on the vertical velocity gradient
along the upper wall, vy, is behind the appearance of various relative extrema. Near the lower
wall, while N for a Newtonian �uid is negligible near the lower wall, inertia a�ects the N
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Figure 12. Inertia e�ects on the shear stress distribution, 
xy, along the upper and lower walls for
viscoelastic �uid (De=4, Rv=1), left, and Newtonian �uid, right. Here �=0:1 and �=1.

pro�les near the lower wall for a viscoelastic �uid. Increasing inertia results in an increase
in the magnitude of N . Furthermore, the N distribution along the lower wall is smoother in
comparison with its distribution along the upper wall.
Figure 12 shows 
xy pro�les at the upper and lower walls for a viscoelastic �uid (De=4;

Rv=1), and Newtonian �uid, for the range Re∈ [0; 3000]. While inertia increases the magni-
tude of 
xy for both �uids, the 
xy distribution along the upper wall is dramatically altered as
elasticity increases, resulting in the appearance of relative extrema at more locations. In other
words, 
xy changes sign more frequently for a viscoelastic �uid than for a Newtonian �uid
near the upper wall. Comparison between 
xy and N pro�les (see Figure 11) near the upper
wall for a viscoelastic �uid reveals that in the inertial regime the normal and shear stress ex-
trema appear at almost the same locations. It is interesting to observe that although the �ow
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Figure 13. Inertia e�ects on vorticity distribution, �, along the upper and lower walls for viscoelastic
�uid (De=4, Rv=1), left, and Newtonian �uid, right. Here �=0:1 and �=1.

kinematics is essentially the same for both Newtonian and viscoelastic �uids (see Figure 4),
the stress distributions are dramatically di�erent. Also, the separation and reattachment points
for viscoelastic �ow do not directly correspond to the change of 
xy sign as in the case of a
Newtonian �ow due to the presence of extra stresses for a viscoelastic �uid. The insigni�cant
e�ect of elasticity on 
xy pro�les near the lower wall in the inertial region is expected as
explained earlier (see Figure 7 and Equation (17)).
In order to have a comprehensive view regarding the in�uence of inertia on viscoelastic

�ow through modulated channels, the variation of the vorticity, �, at the boundary should
be addressed. Figure 13 displays � pro�les at the upper and lower walls for viscoelastic
(De=4; Rv=1), and Newtonian �uids, for the range Re∈ [0; 3000]. For both �uids, inertia
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Figure 14. In�uence of De on the locations of separation and reattachment points against
Reynolds number, for Rv=1, �=1, and �=0:1.

tends to cause � to switch sign along the upper wall, resulting in the onset of back�ow at
a critical Reynolds number, Rec. This critical value depends on the �uid type. Separation
will occur near the upper wall in the range 1500¡Rec¡2000 for a viscoelastic �uid and
2000¡Rec¡2500 for a Newtonian �uid. In other words, Rec is smaller for a viscoelastic �ow.
Further increase in Re results in a larger vortex size. Viscoelastic �ow is characterized by a
larger vortex than the Newtonian �ow for Re¿Rec. Viscoelastic �ow vorticity pro�les along
the upper wall suggest that the vortex might go through sudden expansion as Re exceeds
further beyond Rec. Such behaviour is not observed for Newtonian �uid. Although it was
demonstrated earlier that elasticity tends to minimize the e�ect of the modulation, making
the �ow behaves similar to that between two �at plates (see Figure 8), this observation
is limited to creeping �ow since inertia-dominated viscoelastic �ows are characterized by a
larger vortex size and a smaller Rec. The � pro�les along the lower wall are always negative.
Thus, �ow separation along the lower wall cannot be deduced for the range examined in this
�gure. However, one can still infer from the �gure that back�ow along the lower wall will
eventually occurs below the crest as Re exceeds a di�erent critical Reynolds number. This
critical value depends on �uid elasticity. Figure 13 shows that along the lower wall the �
magnitude for viscoelastic �uid is larger than that for Newtonian �uid. The threshold for the
onset of back�ow along the lower wall will be addressed later. Note the e�ect of elasticity
on the � distribution. In the absence of inertia, elasticity shifts the maximum upstream. As
inertia increases, elasticity causes a downstream shift in the maximum location.
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Figure 15. In�uence of Re on the vortex size plotted against De, for Rv=1, �=0:1 and �=1.

In sum, inertia dramatically alters stress and pressure distribution. Flow kinematics are also
in�uenced by inertia. As Re exceeds a certain threshold, back�ow occurs in the region of
expansion (below the crest). This threshold is smaller for the viscoelastic �uid. However,
earlier investigations demonstrated that in the absence of inertia, an increase in elasticity will
result in a reduction in the vortex size for the �ow through periodically sinusoidal periodic
constricted tube with large amplitude, �=0:5, and �=� [3, 20]. In particular, they demon-
strated that the crest symmetric vortex that occurred upon examining creeping Newtonian �ow
shifts downstream upon the introduction of elasticity and further increase in elasticity causes
shrinkage in the vortex size (see Figures 9–11 in Reference [20], for example). However,
these studies were limited to creeping �ow and to a single channel con�guration. Inertia and
geometric parameters are expected to in�uence the conditions for the onset of back�ow. Their
e�ect on Rec and the vortex formation will be examined next for viscoelastic �uids.

4.3. Interplay between inertia and viscoelastic e�ects, and back�ow

The combined e�ect of elasticity and inertia is expected to in�uence the vortex size and
location as well as the threshold for the onset of back�ow. The quantitative e�ect of elasticity
on the distance between separation and reattachment locations (vortex size) and vortex location
has never been investigated in the inertial regime, and will be emphasized here. Figure 14
shows the location of the points of separation and reattachment as function of the Reynolds
number, for De∈ [0; 24], Rv=1, �=0:1 and �=1. At a given Re, the separation point lies to
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Figure 16. In�uence of Rv on Demax as a function of Re for �=0:1 and �=1.

the left, and the reattachment point lies to the right. The critical Reynolds number for the onset
of back�ow, Rec, which corresponds to the minimum point of each curve, depends signi�cantly
on De. In general, as Re increases above Rec, the vortex size increases. The vortex centre
does not coincide with the midpoint of the wall period; it is located, as expected, upstream
of x= �=2. While the point of separation moves upstream as De increases for a given Re, the
location of the reattachment points vacillates with De. Furthermore, there is a sudden increase
in the vortex size at Re ≈ 3100 for the range 6¡De¡21. Another interesting feature captured
by this �gure is the non-monotonic e�ect of De on Rec. The non-monotonic in�uence of De is
also re�ected on the vortex location at the onset. Initially, elasticity causes a downstream shift
in this location. As De increases above 4, the vortex location at the onset migrates upstream.
Figure 15 shows the change in vortex size as function of De for Re∈ [1500; 3500], Rv=1,

�=0:1, and �=1. For Re62500, the vortex size increase as De increases until De reaches
a critical value, Demax, at which the vortex reaches its maximum size for given Rv and
Re. Clearly, at relatively low Re back�ow exists only over a �nite range of De values.
For Re¿2000, back�ow exists for all practical values of De. Simultaneously, the maximum
weakens as Re increases, giving way to two mild maxima. Figure 16 shows the change in
Demax as Re increases for Rv∈ [0:5; 3], �=0:1 and �=1. In this case, no back�ow appears for
Re¡1000. For a given Rv, Demax increases with Re, and experiences a sudden drop at a Re
that is weakly dependent on Rv (Re ≈ 2800). As Re increases further, Demax increases but at a
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Figure 17. In�uence of � on Demax as a function of Re for Rv=1 and �=1.

smaller rate with Re. As expected, Demax increases with Rv. In�uence of geometric parameters
on Demax is illustrated in Figures 17 and 18. Figure 17 shows the change in Demax as Re
increases for �∈ [0:5; 3], �=1:0 and Rv=1. For a given �, Demax increases as Re increases,
and experiences a sudden drop at a Reynolds number that decreases with �. As Re increases
further, Demax increases and then decreases. As expected, Demax decreases with �. Figure 18
shows the change in Demax as Re increases for �∈ [0:8; 1:4], �=0:1 and Rv=1. For a given
�, Demax increases as Re increases, and experiences a sudden drop at a Re that decreases as
� increases. As Re increases further, Demax increases. As expected, Demax decreases with �,
which explains the absence of Demax for �¡0:8.
The most important threshold parameter in the problem is Rec, which is expected to depend

on geometric and �uid parameters. Figure 19 shows the in�uence of Rv on Rec, and corre-
sponding vortex location, xc=�, as functions of De for �=0:1 and �=1. This is an important
�gure as it summarizes the interplay between inertia and elasticity. As expected, Rec and xc=�
approach the Newtonian limits for large Rv. Generally, Rec decrease with De, and reaches a
minimum at De=Demax, corresponding to the maximum in vortex size (see Figure 16). The
e�ect of elasticity is even stronger on the vortex location at the onset. Initially, the vortex
shifts downstream as De increases until it reaches a critical position at De other than Demax.
The vortex location shifts upstream as De further increases. As Rv increases, the variation of
vortex location with elasticity becomes smoother. The downstream shift of the vortex location
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Figure 18. In�uence of � on Demax as a function of Re for Rv=1 and �=1.

for small values of elasticity is similar to the trend predicted by Pilitsis and Beris [3] and
Burdette et al. [20] for creeping �ow.

4.4. Back�ow along the lower wall

Figure 20 illustrates the streamlines, pressure and normal stress contours for two viscoelas-
tic �uids, De=4 (Figure 20(a)) and De=8 (Figure 20(b)). Here Re=2500, Rv=1, �=1
and �=0:2. Wall amplitude in�uence on the �ow topology is inferred upon comparing
Figure 20(a) and Figure 9 for �=0:2 and 0:1, respectively (the remaining parameters are
the same). An increase in the wall amplitude results in an increase in the vortex size. The
vortex doubles its size as � increases from 0.1 to 0.2. The increase in the vortex size is
associated with the increase in the adverse (streamwise) pressure gradient as � increases. The
increase in the pressure gradient is evident from the increase in the pressure magnitude while
the pressure pro�les along the walls remain relatively unchanged as � increases. The in�uence
of the wall amplitude on the stress distribution is inferred from the contours of normal stress
di�erence, N . Comparison between Figures 9 and 20(a) shows that larger wall amplitude
results in larger N magnitudes near the walls. This increase in magnitude is accompanied by
sharper stress gradients along the walls.
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Figure 19. In�uence of Rv on the critical Reynolds number for the onset of back�ow, Rec, and the
vortex centre location, xc=�, plotted against De, for �=0:1 and �=1.
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Figure 20. In�uence of elasticity on the �ow response for a modulated channel with larger amplitude
(�=0:2, �=1). The �gure displays streamlines, pressure departure, pe, and the contours of the normal

stress di�erence, N , for (a) De=4 and Rv=1, and (b) De=8 and Rv=1.
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Figure 21. In�uence of De on the locations of separation and reattachment points
against the Reynolds number for, for Rv=1, �=1, and �=0:2 at the upper wall,

y= h (a), and lower wall, y=0 (b).

Another e�ect of � on the �ow kinematics is the signi�cant loss of symmetry near the
lower wall as illustrated for �=0:2 in Figure 20(a). This loss of symmetry indicates that a
secondary �ow region develops near the lower wall by changing the controlling parameters.
Evidence of vortex formation near the lower wall is illustrated when De increases from 4
to 8 as depicted in Figure 20. The lower wall vortex appears in the region x=�∈ [0:48; 0:65].
The lower wall vortex is much smaller than the upper wall vortex. The smaller vortex size
near the lower wall can be correlated with the smaller streamwise pressure gradient along the
lower wall in comparison with the upper wall. Further comparison between Figures 20(a) and
(b) shows that although elasticity has negligible e�ect on the pressure, it dramatically alters
the normal stress magnitudes and distribution. This is in agreement with the results reported
above (see Figures 5, 6, 9–11).
Figure 21 shows the location of separation and reattachment points at the upper wall (Figure

21(a)) and lower wall (Figure 21(b)) as functions of the Reynolds number, for De∈ [0; 10],
Rv=1, �=0:2 and �=1. At the upper modulated wall, comparison with Figure 14 shows that
Rec decreases as � increases. Furthermore, the vortex size along the upper wall is typically
larger for �=0:2. Thus, the Re versus x=� curve exhibit weaker minimum as � increases.
This is similar to the wall modulation e�ect on vortex formation for a typical Newtonian
�uid [1, 12–14, 31, 35, 37]. For the examined elasticity range, back�ow near the lower wall
emerges downstream of the crest. The critical Reynolds number for the onset of back�ow
near the lower wall, Recl, which corresponds to the minimum point of each curve, depends
signi�cantly on De. Comparison between Figures 21(a) and (b) reveals that along the lower
wall the Re versus x=� curve is narrower, exhibiting a strong minimum, from which Recl is
easily identi�ed. As Re increases beyond Recl, a second vortex near the lower wall appears in
the diverging section of the channel for highly elastic �uids. The appearance of the secondary
vortex can be related to the �uctuation in the vorticity pro�les along the lower wall. It is
interesting to notice the appearance of small vortex along the lower wall for Newtonian
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Figure 22. In�uence of Rv on the critical Reynolds number for the onset of back�ow along the lower
wall, Recl, and the vortex centre location, xcl=�, plotted against De, for �=0:2 and �=1.
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Figure 23. In�uence of the wall modulation wavenumber on the critical Reynolds number for
the onset of back�ow at the lower wall, Recl, and the vortex location against the modulation

amplitude, �, for a viscoelastic �uid, De=4, Rv=1.
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�ow with relatively high Reynolds number. This is not surprising since it was established
earlier that inertia contributes to a signi�cant increase in the pressure gradient near both walls
(see Figure 9). A large pressure gradient would force separation to occur, which is consistent
with the present result.
Viscoelastic e�ects on the �ow kinematics can be further explored upon examination of

the critical conditions for the onset of back�ow near the straight wall. Figure 22 shows the
in�uence of Rv on the critical Reynolds number, Recl, and corresponding vortex location,
xcl=�, at the onset of back�ow along the lower wall, as functions of De for �=0:2 and �=1.
As expected, Recl and xcl=� approach the Newtonian limit as Rv increases. Generally, Recl
decrease with De, and reaches a minimum at a critical De that increases as Rv increases.
Above this critical De, Recl increases with De. Elasticity e�ects are even stronger on the
vortex location at the onset. In general, the vortex location travels upstream as De increases.
Wall modulation amplitude and wavelength are expected to strongly a�ect the critical con-

ditions for the onset of back�ow near the lower wall. Figures 23(a) and (b) illustrate the
in�uence of � on the dependence of Recl and xcl=�, respectively, on � for a typical viscoelas-
tic �uid, De=4 and Rv=1. Although Recl decreases exponentially as � increases, � has a
non-monotonic e�ect on Recl. A critical wavenumber above which an increase in � results in
a simultaneous growth in Recl exists. Further calculations show that the critical � is related to
the �uid type. In particular, as Rv increases, the critical � decreases. Earlier experimental and
numerical investigations [15, 51–53] on Newtonian �ow on similar geometries fail to report
any back�ow near the �at wall simply because of the large wavenumber, �=2�, used in those
studies. For the examined viscoelastic �uid, a universal relation among Recl, �, and � could
not be identi�ed. The vortex location at the onset is altered by �. For small �, an increase in
� leads to a minor downstream shift in the vortex location. For �¿0:6, an increase in � leads
to a very small upstream shift in the vortex location. The critical location curves seem to
converge towards a critical value (xcl=� ≈ 0:53).This convergence is expected and it correlates
to the convergence of Recl towards the zero limit. It is interesting to notice a saturation e�ect
of the wall modulation amplitude on the vortex location for some ranges of �. In other words,
the vortex location changes with � in a staircase like behaviour. This behaviour is correlated
to the wall modulation amplitude e�ect on the pressure distribution along the lower wall.
While elasticity alters the extrema pressure location along the lower as clearly illustrated in
Figure 5, the wall modulation amplitude does not seem to have a noticeable e�ect on the loci
of the extrema as depicted from the comparison between Figures 20(a) and 9. Comparison
between Figures 22 and 23 further supports the insigni�cant in�uence of � on xcl=�. While
xcl=� shifts upstream from 0.58 to 0.31 as De increases from 0 to 25 for Rv=1, �=0:2, and
�=1, xcl=� changes from 0.57 to 0.53 as � increases from 0.15 to 0.3 for Rv=1, De=4, and
�=1. A similar staircase phenomenon is expected to occur along the upper wall as indicated
by Figure 12 in Reference [13] for the Newtonian limit.

5. CONCLUDING REMARKS

The interplay between inertial and viscoelastic e�ects is examined in this study, for the �ow
in spatially weakly modulated channels. A perturbation approach is applied to obtain the �ow
�eld and stresses. A comparative assessment is carried out against experimental results for
Newtonian �ow. In�uence of viscoelastic parameters on the range of validity of the method
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is also assessed on the basis of conservation of mass. It is established that the perturbation
approach is globally valid to within the highest-order terms kept in the expansion of velocity
and pressure (which, in this case is �3). The main advantage of the perturbation solution is
its ease in implementation, and the low CPU and storage requirement, compared to a full
�nite-volume or �nite-element simulation.
The in�uence of inertia, viscoelastic parameters, modulation amplitude and wavelength on

the �ow through spatially modulated channel is emphasized. In particular, the in�uence of
these parameters on conditions for the onset of vortex �ow, vortex size and location is sys-
tematically examined. Non-monotonic dependence of the vortex size on elasticity is reported.
A critical De, Demax, above which elasticity results in a smaller vortex has been identi�ed. A
relation between Demax and �ow parameters has been established here. This relation is impor-
tant as it clari�es the role of elasticity in the light of earlier contradictory results reported on
the e�ect of elasticity on vortex formation [3, 18, 20]. It is found that back�ow also emerges
near the lower straight wall as well. Back�ow near the wall was not observed in previous
experimental studies [15, 51–53] because of the relatively large wavenumber modulation used.
The threshold for the onset of back�ow near the lower or the upper wall was established. In
general, the critical Re for the onset of back�ow near the lower wall, Recl, is much smaller
than the critical Re for the onset of back�ow near the upper wall, Rec. It is found that Rec
or Recl initially decrease with De and eventually level o� or even increase as De exceeds a
critical value. Similar to Newtonian �ow, an increase in the wall amplitude leads to a larger
vortex size and a smaller critical Reynolds number for the onset of back�ow at either wall.
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